Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-label Classification for Fault Diagnosis of Rotating Electrical Machines (1908.01078v1)

Published 2 Aug 2019 in cs.LG and eess.SP

Abstract: Primary importance is devoted to Fault Detection and Diagnosis (FDI) of electrical machine and drive systems in modern industrial automation. The widespread use of Machine Learning techniques has made it possible to replace traditional motor fault detection techniques with more efficient solutions that are capable of early fault recognition by using large amounts of sensory data. However, the detection of concurrent failures is still a challenge in the presence of disturbing noises or when the multiple faults cause overlapping features. The contribution of this work is to propose a novel methodology using multi-label classification method for simultaneously diagnosing multiple faults and evaluating the fault severity under noisy conditions. Performance of various multi-label classification models are compared. Current and vibration signals are acquired under normal and fault conditions. The applicability of the proposed method is experimentally validated under diverse fault conditions such as unbalance and misalignment.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.