Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Deep Learning Based Energy Disaggregation and On/Off Detection of Household Appliances (1908.00941v2)

Published 3 Jul 2019 in cs.LG, cs.MM, and eess.SP

Abstract: Energy disaggregation, a.k.a. Non-Intrusive Load Monitoring, aims to separate the energy consumption of individual appliances from the readings of a mains power meter measuring the total energy consumption of, e.g. a whole house. Energy consumption of individual appliances can be useful in many applications, e.g., providing appliance-level feedback to the end users to help them understand their energy consumption and ultimately save energy. Recently, with the availability of large-scale energy consumption datasets, various neural network models such as convolutional neural networks and recurrent neural networks have been investigated to solve the energy disaggregation problem. Neural network models can learn complex patterns from large amounts of data and have been shown to outperform the traditional machine learning methods such as variants of hidden Markov models. However, current neural network methods for energy disaggregation are either computational expensive or are not capable of handling long-term dependencies. In this paper, we investigate the application of the recently developed WaveNet models for the task of energy disaggregation. Based on a real-world energy dataset collected from 20 households over two years, we show that WaveNet models outperforms the state-of-the-art deep learning methods proposed in the literature for energy disaggregation in terms of both error measures and computational cost. On the basis of energy disaggregation, we then investigate the performance of two deep-learning based frameworks for the task of on/off detection which aims at estimating whether an appliance is in operation or not. Based on the same dataset, we show that for the task of on/off detection the second framework, i.e., directly training a binary classifier, achieves better performance in terms of F1 score.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube