Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Identification of gatekeeper diseases on the way to cardiovascular mortality (1908.00920v1)

Published 2 Aug 2019 in physics.med-ph, cs.LG, and physics.soc-ph

Abstract: Multimorbidity, the co-occurrence of two or more chronic diseases such as diabetes, obesity or cardiovascular diseases in one patient, is a frequent phenomenon. To make care more efficient, it is of relevance to understand how different diseases condition each other over the life time of a patient. However, most of our current knowledge on such patient careers is either confined to narrow time spans or specific (sets of) diseases. Here, we present a population-wide analysis of long-term patient trajectories by clustering them according to their disease history observed over 17 years. When patients acquire new diseases, their cluster assignment might change. A health trajectory can then be described by a temporal sequence of disease clusters. From the transitions between clusters we construct an age-dependent multilayer network of disease clusters. Random walks on this multilayer network provide a more precise model for the time evolution of multimorbid health states when compared to models that cluster patients based on single diseases. Our results can be used to identify decisive events that potentially determine the future disease trajectory of a patient. We find that for elderly patients the cluster network consists of regions of low, medium and high in-hospital mortality. Diagnoses of diabetes and hypertension are found to strongly increase the likelihood for patients to subsequently move into the high-mortality region later in life.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube