Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Merge of k-NN Graph (1908.00814v6)

Published 2 Aug 2019 in cs.IR, cs.DS, and cs.LG

Abstract: k-nearest neighbor graph is a fundamental data structure in many disciplines such as information retrieval, data-mining, pattern recognition, and machine learning, etc. In the literature, considerable research has been focusing on how to efficiently build an approximate k-nearest neighbor graph (k-NN graph) for a fixed dataset. Unfortunately, a closely related issue of how to merge two existing k-NN graphs has been overlooked. In this paper, we address the issue of k-NN graph merging in two different scenarios. In the first scenario, a symmetric merge algorithm is proposed to combine two approximate k-NN graphs. The algorithm facilitates large-scale processing by the efficient merging of k-NN graphs that are produced in parallel. In the second scenario, a joint merge algorithm is proposed to expand an existing k-NN graph with a raw dataset. The algorithm enables the incremental construction of a hierarchical approximate k-NN graph. Superior performance is attained when leveraging the hierarchy for NN search of various data types, dimensionality, and distance measures.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.