Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient computation of counterfactual explanations of LVQ models (1908.00735v2)

Published 2 Aug 2019 in cs.LG, cs.AI, and stat.ML

Abstract: The increasing use of machine learning in practice and legal regulations like EU's GDPR cause the necessity to be able to explain the prediction and behavior of machine learning models. A prominent example of particularly intuitive explanations of AI models in the context of decision making are counterfactual explanations. Yet, it is still an open research problem how to efficiently compute counterfactual explanations for many models. We investigate how to efficiently compute counterfactual explanations for an important class of models, prototype-based classifiers such as learning vector quantization models. In particular, we derive specific convex and non-convex programs depending on the used metric.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.