Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Rayleigh Quotient Iteration, cubic convergence, and second covariant derivative (1908.00639v4)

Published 1 Aug 2019 in math.OC, cs.NA, and math.NA

Abstract: We generalize the Rayleigh Quotient Iteration (RQI) to the problem of solving a nonlinear equation where the variables are divided into two subsets, one satisfying additional equality constraints and the other could be considered as (generalized nonlinear Lagrange) multipliers. This framework covers several problems, including the (linear\slash nonlinear) eigenvalue problems, the constrained optimization problem, and the tensor eigenpair problem. Often, the RQI increment could be computed in two equivalent forms. The classical Rayleigh quotient algorithm uses the {\it Schur form}, while the projected Hessian method in constrained optimization uses the {\it Newton form}. We link the cubic convergence of these iterations with a {\it constrained Chebyshev term}, showing it is related to the geometric concept of {\it second covariant derivative}. Both the generalized Rayleigh quotient and the {\it Hessian of the retraction} used in the RQI appear in the Chebyshev term. We derive several cubic convergence results in application and construct new RQIs for matrix and tensor problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)