Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimize TSK Fuzzy Systems for Classification Problems: Mini-Batch Gradient Descent with Uniform Regularization and Batch Normalization (1908.00636v3)

Published 1 Aug 2019 in cs.LG and stat.ML

Abstract: Takagi-Sugeno-Kang (TSK) fuzzy systems are flexible and interpretable machine learning models; however, they may not be easily optimized when the data size is large, and/or the data dimensionality is high. This paper proposes a mini-batch gradient descent (MBGD) based algorithm to efficiently and effectively train TSK fuzzy classifiers. It integrates two novel techniques: 1) uniform regularization (UR), which forces the rules to have similar average contributions to the output, and hence to increase the generalization performance of the TSK classifier; and, 2) batch normalization (BN), which extends BN from deep neural networks to TSK fuzzy classifiers to expedite the convergence and improve the generalization performance. Experiments on 12 UCI datasets from various application domains, with varying size and dimensionality, demonstrated that UR and BN are effective individually, and integrating them can further improve the classification performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.