Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cascaded Context Pyramid for Full-Resolution 3D Semantic Scene Completion (1908.00382v1)

Published 1 Aug 2019 in cs.CV

Abstract: Semantic Scene Completion (SSC) aims to simultaneously predict the volumetric occupancy and semantic category of a 3D scene. It helps intelligent devices to understand and interact with the surrounding scenes. Due to the high-memory requirement, current methods only produce low-resolution completion predictions, and generally lose the object details. Furthermore, they also ignore the multi-scale spatial contexts, which play a vital role for the 3D inference. To address these issues, in this work we propose a novel deep learning framework, named Cascaded Context Pyramid Network (CCPNet), to jointly infer the occupancy and semantic labels of a volumetric 3D scene from a single depth image. The proposed CCPNet improves the labeling coherence with a cascaded context pyramid. Meanwhile, based on the low-level features, it progressively restores the fine-structures of objects with Guided Residual Refinement (GRR) modules. Our proposed framework has three outstanding advantages: (1) it explicitly models the 3D spatial context for performance improvement; (2) full-resolution 3D volumes are produced with structure-preserving details; (3) light-weight models with low-memory requirements are captured with a good extensibility. Extensive experiments demonstrate that in spite of taking a single-view depth map, our proposed framework can generate high-quality SSC results, and outperforms state-of-the-art approaches on both the synthetic SUNCG and real NYU datasets.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.