Papers
Topics
Authors
Recent
2000 character limit reached

Sparse Regression via Range Counting (1908.00351v2)

Published 1 Aug 2019 in cs.DS and cs.CG

Abstract: The sparse regression problem, also known as best subset selection problem, can be cast as follows: Given a set $S$ of $n$ points in $\mathbb{R}d$, a point $y\in \mathbb{R}d$, and an integer $2 \leq k \leq d$, find an affine combination of at most $k$ points of $S$ that is nearest to $y$. We describe a $O(n{k-1} \log{d-k+2} n)$-time randomized $(1+\varepsilon)$-approximation algorithm for this problem with (d) and (\varepsilon) constant. This is the first algorithm for this problem running in time $o(nk)$. Its running time is similar to the query time of a data structure recently proposed by Har-Peled, Indyk, and Mahabadi (ICALP'18), while not requiring any preprocessing. Up to polylogarithmic factors, it matches a conditional lower bound relying on a conjecture about affine degeneracy testing. In the special case where $k = d = O(1)$, we also provide a simple $O_\delta(n{d-1+\delta})$-time deterministic exact algorithm, for any (\delta > 0). Finally, we show how to adapt the approximation algorithm for the sparse linear regression and sparse convex regression problems with the same running time, up to polylogarithmic factors.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com