Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A direct approach for function approximation on data defined manifolds (1908.00156v4)

Published 1 Aug 2019 in cs.LG, math.FA, and stat.ML

Abstract: In much of the literature on function approximation by deep networks, the function is assumed to be defined on some known domain, such as a cube or a sphere. In practice, the data might not be dense on these domains, and therefore, the approximation theory results are observed to be too conservative. In manifold learning, one assumes instead that the data is sampled from an unknown manifold; i.e., the manifold is defined by the data itself. Function approximation on this unknown manifold is then a two stage procedure: first, one approximates the Laplace-Beltrami operator (and its eigen-decomposition) on this manifold using a graph Laplacian, and next, approximates the target function using the eigen-functions. Alternatively, one estimates first some atlas on the manifold and then uses local approximation techniques based on the local coordinate charts. In this paper, we propose a more direct approach to function approximation on \emph{unknown}, data defined manifolds without computing the eigen-decomposition of some operator or an atlas for the manifold, and without any kind of training in the classical sense. Our constructions are universal; i.e., do not require the knowledge of any prior on the target function other than continuity on the manifold. We estimate the degree of approximation. For smooth functions, the estimates do not suffer from the so-called saturation phenomenon. We demonstrate via a property called good propagation of errors how the results can be lifted for function approximation using deep networks where each channel evaluates a Gaussian network on a possibly unknown manifold.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)