Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Structural Average of Labeled Merge Trees for Uncertainty Visualization (1908.00113v2)

Published 31 Jul 2019 in cs.CG, cs.HC, and math.AT

Abstract: Physical phenomena in science and engineering are frequently modeled using scalar fields. In scalar field topology, graph-based topological descriptors such as merge trees, contour trees, and Reeb graphs are commonly used to characterize topological changes in the (sub)level sets of scalar fields. One of the biggest challenges and opportunities to advance topology-based visualization is to understand and incorporate uncertainty into such topological descriptors to effectively reason about their underlying data. In this paper, we study a structural average of a set of labeled merge trees and use it to encode uncertainty in data. Specifically, we compute a 1-center tree that minimizes its maximum distance to any other tree in the set under a well-defined metric called the interleaving distance. We provide heuristic strategies that compute structural averages of merge trees whose labels do not fully agree. We further provide an interactive visualization system that resembles a numerical calculator that takes as input a set of merge trees and outputs a tree as their structural average. We also highlight structural similarities between the input and the average and incorporate uncertainty information for visual exploration. We develop a novel measure of uncertainty, referred to as consistency, via a metric-space view of the input trees. Finally, we demonstrate an application of our framework through merge trees that arise from ensembles of scalar fields. Our work is the first to employ interleaving distances and consistency to study a global, mathematically rigorous, structural average of merge trees in the context of uncertainty visualization.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.