Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improving MPI Collective I/O Performance With Intra-node Request Aggregation (1907.12656v1)

Published 29 Jul 2019 in cs.DC

Abstract: Two-phase I/O is a well-known strategy for implementing collective MPI-IO functions. It redistributes I/O requests among the calling processes into a form that minimizes the file access costs. As modern parallel computers continue to grow into the exascale era, the communication cost of such request redistribution can quickly overwhelm collective I/O performance. This effect has been observed from parallel jobs that run on multiple compute nodes with a high count of MPI processes on each node. To reduce the communication cost, we present a new design for collective I/O by adding an extra communication layer that performs request aggregation among processes within the same compute nodes. This approach can significantly reduce inter-node communication congestion when redistributing the I/O requests. We evaluate the performance and compare with the original two-phase I/O on a Cray XC40 parallel computer with Intel KNL processors. Using I/O patterns from two large-scale production applications and an I/O benchmark, we show the performance improvement of up to 29 times when running 16384 MPI processes on 256 compute nodes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.