Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-Agent Path Finding with Capacity Constraints (1907.12648v1)

Published 21 Jul 2019 in cs.MA and cs.AI

Abstract: In multi-agent path finding (MAPF) the task is to navigate agents from their starting positions to given individual goals. The problem takes place in an undirected graph whose vertices represent positions and edges define the topology. Agents can move to neighbor vertices across edges. In the standard MAPF, space occupation by agents is modeled by a capacity constraint that permits at most one agent per vertex. We suggest an extension of MAPF in this paper that permits more than one agent per vertex. Propositional satisfiability (SAT) models for these extensions of MAPF are studied. We focus on modeling capacity constraints in SAT-based formulations of MAPF and evaluation of performance of these models. We extend two existing SAT-based formulations with vertex capacity constraints: MDD-SAT and SMT-CBS where the former is an approach that builds the model in an eager way while the latter relies on lazy construction of the model.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.