Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Invariant Representations for Sentiment Analysis: The Missing Material is Datasets (1907.12305v1)

Published 29 Jul 2019 in cs.LG, cs.IR, and stat.ML

Abstract: Learning representations which remain invariant to a nuisance factor has a great interest in Domain Adaptation, Transfer Learning, and Fair Machine Learning. Finding such representations becomes highly challenging in NLP tasks since the nuisance factor is entangled in a raw text. To our knowledge, a major issue is also that only few NLP datasets allow assessing the impact of such factor. In this paper, we introduce two generalization metrics to assess model robustness to a nuisance factor: \textit{generalization under target bias} and \textit{generalization onto unknown}. We combine those metrics with a simple data filtering approach to control the impact of the nuisance factor on the data and thus to build experimental biased datasets. We apply our method to standard datasets of the literature (\textit{Amazon} and \textit{Yelp}). Our work shows that a simple text classification baseline (i.e., sentiment analysis on reviews) may be badly affected by the \textit{product ID} (considered as a nuisance factor) when learning the polarity of a review. The method proposed is generic and applicable as soon as the nuisance variable is annotated in the dataset.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.