Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A mathematical model for universal semantics (1907.12293v7)

Published 29 Jul 2019 in cs.CL, cs.AI, and cs.LG

Abstract: We characterize the meaning of words with language-independent numerical fingerprints, through a mathematical analysis of recurring patterns in texts. Approximating texts by Markov processes on a long-range time scale, we are able to extract topics, discover synonyms, and sketch semantic fields from a particular document of moderate length, without consulting external knowledge-base or thesaurus. Our Markov semantic model allows us to represent each topical concept by a low-dimensional vector, interpretable as algebraic invariants in succinct statistical operations on the document, targeting local environments of individual words. These language-independent semantic representations enable a robot reader to both understand short texts in a given language (automated question-answering) and match medium-length texts across different languages (automated word translation). Our semantic fingerprints quantify local meaning of words in 14 representative languages across 5 major language families, suggesting a universal and cost-effective mechanism by which human languages are processed at the semantic level. Our protocols and source codes are publicly available on https://github.com/yajun-zhou/linguae-naturalis-principia-mathematica

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)