Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Connected Version of the Graph Coloring Game (1907.12276v3)

Published 29 Jul 2019 in cs.DM and math.CO

Abstract: The graph coloring game is a two-player game in which, given a graph G and a set of k colors, the two players, Alice and Bob, take turns coloring properly an uncolored vertex of G, Alice having the first move. Alice wins the game if and only if all the vertices of G are eventually colored. The game chromatic number of a graph G is then defined as the smallest integer k for which Alice has a winning strategy when playing the graph coloring game on G with k colors. In this paper, we introduce and study a new version of the graph coloring game by requiring that, after each player's turn, the subgraph induced by the set of colored vertices is connected. The connected game chromatic number of a graph G is then the smallest integer k for which Alice has a winning strategy when playing the connected graph coloring game on G with k colors. We prove that the connected game chromatic number of every outerplanar graph is at most 5 and that there exist outerplanar graphs with connected game chromatic number 4. Moreover, we prove that for every integer k $\ge$ 3, there exist bipartite graphs on which Bob wins the connected coloring game with k colors, while Alice wins the connected coloring game with two colors on every bipartite graph.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.