Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Connected Version of the Graph Coloring Game (1907.12276v3)

Published 29 Jul 2019 in cs.DM and math.CO

Abstract: The graph coloring game is a two-player game in which, given a graph G and a set of k colors, the two players, Alice and Bob, take turns coloring properly an uncolored vertex of G, Alice having the first move. Alice wins the game if and only if all the vertices of G are eventually colored. The game chromatic number of a graph G is then defined as the smallest integer k for which Alice has a winning strategy when playing the graph coloring game on G with k colors. In this paper, we introduce and study a new version of the graph coloring game by requiring that, after each player's turn, the subgraph induced by the set of colored vertices is connected. The connected game chromatic number of a graph G is then the smallest integer k for which Alice has a winning strategy when playing the connected graph coloring game on G with k colors. We prove that the connected game chromatic number of every outerplanar graph is at most 5 and that there exist outerplanar graphs with connected game chromatic number 4. Moreover, we prove that for every integer k $\ge$ 3, there exist bipartite graphs on which Bob wins the connected coloring game with k colors, while Alice wins the connected coloring game with two colors on every bipartite graph.

Citations (9)

Summary

We haven't generated a summary for this paper yet.