Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

TopicSifter: Interactive Search Space Reduction Through Targeted Topic Modeling (1907.12079v1)

Published 28 Jul 2019 in cs.IR and cs.HC

Abstract: Topic modeling is commonly used to analyze and understand large document collections. However, in practice, users want to focus on specific aspects or "targets" rather than the entire corpus. For example, given a large collection of documents, users may want only a smaller subset which more closely aligns with their interests, tasks, and domains. In particular, our paper focuses on large-scale document retrieval with high recall where any missed relevant documents can be critical. A simple keyword matching search is generally not effective nor efficient as 1) it is difficult to find a list of keyword queries that can cover the documents of interest before exploring the dataset, 2) some documents may not contain the exact keywords of interest but may still be highly relevant, and 3) some words have multiple meanings, which would result in irrelevant documents included in the retrieved subset. In this paper, we present TopicSifter, a visual analytics system for interactive search space reduction. Our system utilizes targeted topic modeling based on nonnegative matrix factorization and allows users to give relevance feedback in order to refine their target and guide the topic modeling to the most relevant results.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.