Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Blocking Bandits (1907.11975v2)

Published 27 Jul 2019 in cs.LG and stat.ML

Abstract: We consider a novel stochastic multi-armed bandit setting, where playing an arm makes it unavailable for a fixed number of time slots thereafter. This models situations where reusing an arm too often is undesirable (e.g. making the same product recommendation repeatedly) or infeasible (e.g. compute job scheduling on machines). We show that with prior knowledge of the rewards and delays of all the arms, the problem of optimizing cumulative reward does not admit any pseudo-polynomial time algorithm (in the number of arms) unless randomized exponential time hypothesis is false, by mapping to the PINWHEEL scheduling problem. Subsequently, we show that a simple greedy algorithm that plays the available arm with the highest reward is asymptotically $(1-1/e)$ optimal. When the rewards are unknown, we design a UCB based algorithm which is shown to have $c \log T + o(\log T)$ cumulative regret against the greedy algorithm, leveraging the free exploration of arms due to the unavailability. Finally, when all the delays are equal the problem reduces to Combinatorial Semi-bandits providing us with a lower bound of $c' \log T+ \omega(\log T)$.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.