Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Rethinking Classification and Localization for Cascade R-CNN (1907.11914v1)

Published 27 Jul 2019 in cs.CV

Abstract: We extend the state-of-the-art Cascade R-CNN with a simple feature sharing mechanism. Our approach focuses on the performance increases on high IoU but decreases on low IoU thresholds--a key problem this detector suffers from. Feature sharing is extremely helpful, our results show that given this mechanism embedded into all stages, we can easily narrow the gap between the last stage and preceding stages on low IoU thresholds without resorting to the commonly used testing ensemble but the network itself. We also observe obvious improvements on all IoU thresholds benefited from feature sharing, and the resulting cascade structure can easily match or exceed its counterparts, only with negligible extra parameters introduced. To push the envelope, we demonstrate 43.2 AP on COCO object detection without any bells and whistles including testing ensemble, surpassing previous Cascade R-CNN by a large margin. Our framework is easy to implement and we hope it can serve as a general and strong baseline for future research.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.