Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Many could be better than all: A novel instance-oriented algorithm for Multi-modal Multi-label problem (1907.11857v1)

Published 27 Jul 2019 in cs.LG, cs.MM, and stat.ML

Abstract: With the emergence of diverse data collection techniques, objects in real applications can be represented as multi-modal features. What's more, objects may have multiple semantic meanings. Multi-modal and Multi-label (MMML) problem becomes a universal phenomenon. The quality of data collected from different channels are inconsistent and some of them may not benefit for prediction. In real life, not all the modalities are needed for prediction. As a result, we propose a novel instance-oriented Multi-modal Classifier Chains (MCC) algorithm for MMML problem, which can make convince prediction with partial modalities. MCC extracts different modalities for different instances in the testing phase. Extensive experiments are performed on one real-world herbs dataset and two public datasets to validate our proposed algorithm, which reveals that it may be better to extract many instead of all of the modalities at hand.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.