Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Choosing with unknown causal information: Action-outcome probabilities for decision making can be grounded in causal models (1907.11752v6)

Published 26 Jul 2019 in cs.AI and stat.ME

Abstract: Decision-making under uncertainty and causal thinking are fundamental aspects of intelligent reasoning. Decision-making has been well studied when the available information is considered at the associative (probabilistic) level. The classical Theorems of von Neumann-Morgenstern and Savage provide a formal criterion for rational choice using associative information: maximize expected utility. There is an ongoing debate around the origin of probabilities involved in such calculation. In this work, we will show how the probabilities for decision-making can be grounded in causal models by considering decision problems in which the available actions and consequences are causally connected. In this setting, actions are regarded as an intervention over a causal model. Then, we extend a previous causal decision-making result, which relies on a known causal model, to the case in which the causal mechanism that controls some environment is unknown to a rational decision-maker. In this way, action-outcome probabilities can be grounded in causal models in known and unknown cases. Finally, as an application, we extend the well-known concept of Nash Equilibrium to the case in which the players of a strategic game consider causal information.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.