Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Large scale continuous-time mean-variance portfolio allocation via reinforcement learning (1907.11718v2)

Published 26 Jul 2019 in q-fin.PM, cs.LG, and math.OC

Abstract: We propose to solve large scale Markowitz mean-variance (MV) portfolio allocation problem using reinforcement learning (RL). By adopting the recently developed continuous-time exploratory control framework, we formulate the exploratory MV problem in high dimensions. We further show the optimality of a multivariate Gaussian feedback policy, with time-decaying variance, in trading off exploration and exploitation. Based on a provable policy improvement theorem, we devise a scalable and data-efficient RL algorithm and conduct large scale empirical tests using data from the S&P 500 stocks. We found that our method consistently achieves over 10% annualized returns and it outperforms econometric methods and the deep RL method by large margins, for both long and medium terms of investment with monthly and daily trading.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)