Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Incremental Methods for Weakly Convex Optimization (1907.11687v2)

Published 26 Jul 2019 in math.OC, cs.IT, and math.IT

Abstract: Incremental methods are widely utilized for solving finite-sum optimization problems in machine learning and signal processing. In this paper, we study a family of incremental methods -- including incremental subgradient, incremental proximal point, and incremental prox-linear methods -- for solving weakly convex optimization problems. Such a problem class covers many nonsmooth nonconvex instances that arise in engineering fields. We show that the three said incremental methods have an iteration complexity of $O(\varepsilon{-4})$ for driving a natural stationarity measure to below $\varepsilon$. Moreover, we show that if the weakly convex function satisfies a sharpness condition, then all three incremental methods, when properly initialized and equipped with geometrically diminishing stepsizes, can achieve a local linear rate of convergence. Our work is the first to extend the convergence rate analysis of incremental methods from the nonsmooth convex regime to the weakly convex regime. Lastly, we conduct numerical experiments on the robust matrix sensing problem to illustrate the convergence performance of the three incremental methods.

Citations (38)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube