Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-level Domain Adaptive learning for Cross-Domain Detection (1907.11484v2)

Published 26 Jul 2019 in cs.CV

Abstract: In recent years, object detection has shown impressive results using supervised deep learning, but it remains challenging in a cross-domain environment. The variations of illumination, style, scale, and appearance in different domains can seriously affect the performance of detection models. Previous works use adversarial training to align global features across the domain shift and to achieve image information transfer. However, such methods do not effectively match the distribution of local features, resulting in limited improvement in cross-domain object detection. To solve this problem, we propose a multi-level domain adaptive model to simultaneously align the distributions of local-level features and global-level features. We evaluate our method with multiple experiments, including adverse weather adaptation, synthetic data adaptation, and cross camera adaptation. In most object categories, the proposed method achieves superior performance against state-of-the-art techniques, which demonstrates the effectiveness and robustness of our method.

Citations (90)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.