Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Almost Shortest Paths with Near-Additive Error in Weighted Graphs (1907.11422v3)

Published 26 Jul 2019 in cs.DS

Abstract: Let $G=(V,E,w)$ be a weighted undirected graph with $n$ vertices and $m$ edges, and fix a set of $s$ sources $S\subseteq V$. We study the problem of computing {\em almost shortest paths} (ASP) for all pairs in $S \times V$ in both classical centralized and parallel (PRAM) models of computation. Consider the regime of multiplicative approximation of $1+\epsilon$, for an arbitrarily small constant $\epsilon > 0$ . In this regime existing centralized algorithms require $\Omega(\min{|E|s,n\omega})$ time, where $\omega < 2.372$ is the matrix multiplication exponent. Existing PRAM algorithms with polylogarithmic depth (aka time) require work $\Omega(\min{|E|s,n\omega})$. Our centralized algorithm has running time $O((m+ ns)n\rho)$, and its PRAM counterpart has polylogarithmic depth and work $O((m + ns)n\rho)$, for an arbitrarily small constant $\rho > 0$. For a pair $(s,v) \in S\times V$, it provides a path of length $\hat{d}(s,v)$ that satisfies $\hat{d}(s,v) \le (1+\epsilon)d_G(s,v) + \beta \cdot W(s,v)$, where $W(s,v)$ is the weight of the heaviest edge on some shortest $s-v$ path. Hence our additive term depends linearly on a {\em local} maximum edge weight, as opposed to the global maximum edge weight in previous works. Finally, our $\beta = (1/\rho){O(1/\rho)}$. We also extend a centralized algorithm of Dor et al. \cite{DHZ00}. For a parameter $\kappa = 1,2,\ldots$, this algorithm provides for {\em unweighted} graphs a purely additive approximation of $2(\kappa -1)$ for {\em all pairs shortest paths} (APASP) in time $\tilde{O}(n{2+1/\kappa})$. Within the same running time, our algorithm for {\em weighted} graphs provides a purely additive error of $2(\kappa - 1) W(u,v)$, for every vertex pair $(u,v) \in {V \choose 2}$, with $W(u,v)$ defined as above. On the way to these results we devise a suit of novel constructions of spanners, emulators and hopsets.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube