Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Image Enhancement by Recurrently-trained Super-resolution Network (1907.11341v1)

Published 26 Jul 2019 in eess.IV, cs.CV, and cs.LG

Abstract: We introduce a new learning strategy for image enhancement by recurrently training the same simple superresolution (SR) network multiple times. After initially training an SR network by using pairs of a corrupted low resolution (LR) image and an original image, the proposed method makes use of the trained SR network to generate new high resolution (HR) images with a doubled resolution from the original uncorrupted images. Then, the new HR images are downscaled to the original resolution, which work as target images for the SR network in the next stage. The newly generated HR images by the repeatedly trained SR network show better image quality and this strategy of training LR to mimic new HR can lead to a more efficient SR network. Up to a certain point, by repeating this process multiple times, better and better images are obtained. This recurrent leaning strategy for SR can be a good solution for downsizing convolution networks and making a more efficient SR network. To measure the enhanced image quality, for the first time in this area of super-resolution and image enhancement, we use VIQET MOS score which reflects human visual quality more accurately than the conventional MSE measure.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)