Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Visual Actions Using Multiple Verb-Only Labels (1907.11117v2)

Published 25 Jul 2019 in cs.CV

Abstract: This work introduces verb-only representations for both recognition and retrieval of visual actions, in video. Current methods neglect legitimate semantic ambiguities between verbs, instead choosing unambiguous subsets of verbs along with objects to disambiguate the actions. We instead propose multiple verb-only labels, which we learn through hard or soft assignment as a regression. This enables learning a much larger vocabulary of verbs, including contextual overlaps of these verbs. We collect multi-verb annotations for three action video datasets and evaluate the verb-only labelling representations for action recognition and cross-modal retrieval (video-to-text and text-to-video). We demonstrate that multi-label verb-only representations outperform conventional single verb labels. We also explore other benefits of a multi-verb representation including cross-dataset retrieval and verb type manner and result verb types) retrieval.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)