Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Convolutional Neural Networks on Randomized Data (1907.10935v1)

Published 25 Jul 2019 in cs.CV

Abstract: Convolutional Neural Networks (CNNs) are build specifically for computer vision tasks for which it is known that the input data is a hierarchical structure based on locally correlated elements. The question that naturally arises is what happens with the performance of CNNs if one of the basic properties of the data is removed, e.g. what happens if the image pixels are randomly permuted? Intuitively one expects that the convolutional network performs poorly in these circumstances in contrast to a multilayer perceptron (MLPs) whose classification accuracy should not be affected by the pixel randomization. This work shows that by randomizing image pixels the hierarchical structure of the data is destroyed and long range correlations are introduced which standard CNNs are not able to capture. We show that their classification accuracy is heavily dependent on the class similarities as well as the pixel randomization process. We also indicate that dilated convolutions are able to recover some of the pixel correlations and improve the performance.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)