Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Convolutional Neural Networks on Randomized Data (1907.10935v1)

Published 25 Jul 2019 in cs.CV

Abstract: Convolutional Neural Networks (CNNs) are build specifically for computer vision tasks for which it is known that the input data is a hierarchical structure based on locally correlated elements. The question that naturally arises is what happens with the performance of CNNs if one of the basic properties of the data is removed, e.g. what happens if the image pixels are randomly permuted? Intuitively one expects that the convolutional network performs poorly in these circumstances in contrast to a multilayer perceptron (MLPs) whose classification accuracy should not be affected by the pixel randomization. This work shows that by randomizing image pixels the hierarchical structure of the data is destroyed and long range correlations are introduced which standard CNNs are not able to capture. We show that their classification accuracy is heavily dependent on the class similarities as well as the pixel randomization process. We also indicate that dilated convolutions are able to recover some of the pixel correlations and improve the performance.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.