Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Detecting Stable Communities in Link Streams at Multiple Temporal Scales (1907.10453v1)

Published 24 Jul 2019 in cs.SI and physics.soc-ph

Abstract: Link streams model interactions over time in a wide range of fields. Under this model, the challenge is to mine efficiently both temporal and topological structures. Community detection and change point detection are one of the most powerful tools to analyze such evolving interactions. In this paper, we build on both to detect stable community structures by identifying change points within meaningful communities. Unlike existing dynamic community detection algorithms, the proposed method is able to discover stable communities efficiently at multiple temporal scales. We test the effectiveness of our method on synthetic networks, and on high-resolution time-varying networks of contacts drawn from real social networks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube