Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Constrained Clustering: General Pairwise and Cardinality Constraints (1907.10410v2)

Published 24 Jul 2019 in cs.LG and stat.ML

Abstract: We study constrained clustering, where constraints guide the clustering process. In existing works, two categories of constraints have been widely explored, namely pairwise and cardinality constraints. Pairwise constraints enforce the cluster labels of two instances to be the same (must-link constraints) or different (cannot-link constraints). Cardinality constraints encourage cluster sizes to satisfy a user-specified distribution. Most existing constrained clustering models can only utilize one category of constraints at a time. We enforce the above two categories into a unified clustering model starting with the integer program formulation of the standard K-means. As the two categories provide different useful information, utilizing both allow for better clustering performance. However, the optimization is difficult due to the binary and quadratic constraints in the unified formulation. To solve this, we utilize two techniques: equivalently replacing the binary constraints by the intersection of two continuous constraints; the other is transforming the quadratic constraints into bi-linear constraints by introducing extra variables. We derive an equivalent continuous reformulation with simple constraints, which can be efficiently solved by Alternating Direction Method of Multipliers. Extensive experiments on both synthetic and real data demonstrate when: (1) utilizing a single category of constraint, the proposed model is superior to or competitive with SOTA constrained clustering models, and (2) utilizing both categories of constraints jointly, the proposed model shows better performance than the case of the single category. The experiments show that the proposed method exploits the constraints to achieve perfect clustering performance with improved clustering to 2%-5% in classical clustering metrics, e.g. Adjusted Random, Mirkin's, and Huber's, indices outerperfomring other methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube