Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Managing Multiple Mobile Resources (1907.09834v1)

Published 23 Jul 2019 in cs.DS

Abstract: We extend the Mobile Server Problem, introduced in SPAA'17, to a model where k identical mobile resources, here named servers, answer requests appearing at points in the Euclidean space. In order to reduce communication costs, the positions of the servers can be adapted by a limited distance m_s per round for each server. The costs are measured similar to the classical Page Migration Problem, i.e., answering a request induces costs proportional to the distance to the nearest server, and moving a server induces costs proportional to the distance multiplied with a weight D. We show that, in our model, no online algorithm can have a constant competitive ratio, i.e., one which is independent of the input length n, even if an augmented moving distance of (1+\delta)m_s is allowed for the online algorithm. Therefore we investigate a restriction of the power of the adversary dictating the sequence of requests: We demand locality of requests, i.e., that consecutive requests come from points in the Euclidean space with distance bounded by some constant m_c. We show constant lower bounds on the competitiveness in this setting (independent of n, but dependent on k, m_s and m_c). On the positive side, we present a deterministic online algorithm with bounded competitiveness when augmented moving distance and locality of requests is assumed. Our algorithm simulates any given algorithm for the classical k-Page Migration problem as guidance for its servers and extends it by a greedy move of one server in every round. The resulting competitive ratio is polynomial in the number of servers k, the ratio between m_c and m_s, the inverse of the augmentation factor 1/\delta and the competitive ratio of the simulated k-Page Migration algorithm.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.