Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bilinear Graph Networks for Visual Question Answering (1907.09815v2)

Published 23 Jul 2019 in cs.CV

Abstract: This paper revisits the bilinear attention networks in the visual question answering task from a graph perspective. The classical bilinear attention networks build a bilinear attention map to extract the joint representation of words in the question and objects in the image but lack fully exploring the relationship between words for complex reasoning. In contrast, we develop bilinear graph networks to model the context of the joint embeddings of words and objects. Two kinds of graphs are investigated, namely image-graph and question-graph. The image-graph transfers features of the detected objects to their related query words, enabling the output nodes to have both semantic and factual information. The question-graph exchanges information between these output nodes from image-graph to amplify the implicit yet important relationship between objects. These two kinds of graphs cooperate with each other, and thus our resulting model can model the relationship and dependency between objects, which leads to the realization of multi-step reasoning. Experimental results on the VQA v2.0 validation dataset demonstrate the ability of our method to handle the complex questions. On the test-std set, our best single model achieves state-of-the-art performance, boosting the overall accuracy to 72.41%.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.