Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

EmotionX-HSU: Adopting Pre-trained BERT for Emotion Classification (1907.09669v1)

Published 23 Jul 2019 in cs.CL

Abstract: This paper describes our approach to the EmotionX-2019, the shared task of SocialNLP 2019. To detect emotion for each utterance of two datasets from the TV show Friends and Facebook chat log EmotionPush, we propose two-step deep learning based methodology: (i) encode each of the utterance into a sequence of vectors that represent its meaning; and (ii) use a simply softmax classifier to predict one of the emotions amongst four candidates that an utterance may carry. Notice that the source of labeled utterances is not rich, we utilise a well-trained model, known as BERT, to transfer part of the knowledge learned from a large amount of corpus to our model. We then focus on fine-tuning our model until it well fits to the in-domain data. The performance of the proposed model is evaluated by micro-F1 scores, i.e., 79.1% and 86.2% for the testsets of Friends and EmotionPush, respectively. Our model ranks 3rd among 11 submissions.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)