Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Grasping Using Tactile Sensing and Deep Calibration (1907.09656v1)

Published 23 Jul 2019 in cs.RO and cs.CV

Abstract: Tactile perception is an essential ability of intelligent robots in interaction with their surrounding environments. This perception as an intermediate level acts between sensation and action and has to be defined properly to generate suitable action in response to sensed data. In this paper, we propose a feedback approach to address robot grasping task using force-torque tactile sensing. While visual perception is an essential part for gross reaching, constant utilization of this sensing modality can negatively affect the grasping process with overwhelming computation. In such case, human being utilizes tactile sensing to interact with objects. Inspired by, the proposed approach is presented and evaluated on a real robot to demonstrate the effectiveness of the suggested framework. Moreover, we utilize a deep learning framework called Deep Calibration in order to eliminate the effect of bias in the collected data from the robot sensors.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.