Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stochastic algorithms with geometric step decay converge linearly on sharp functions (1907.09547v1)

Published 22 Jul 2019 in math.OC, cs.LG, and stat.ML

Abstract: Stochastic (sub)gradient methods require step size schedule tuning to perform well in practice. Classical tuning strategies decay the step size polynomially and lead to optimal sublinear rates on (strongly) convex problems. An alternative schedule, popular in nonconvex optimization, is called \emph{geometric step decay} and proceeds by halving the step size after every few epochs. In recent work, geometric step decay was shown to improve exponentially upon classical sublinear rates for the class of \emph{sharp} convex functions. In this work, we ask whether geometric step decay similarly improves stochastic algorithms for the class of sharp nonconvex problems. Such losses feature in modern statistical recovery problems and lead to a new challenge not present in the convex setting: the region of convergence is local, so one must bound the probability of escape. Our main result shows that for a large class of stochastic, sharp, nonsmooth, and nonconvex problems a geometric step decay schedule endows well-known algorithms with a local linear rate of convergence to global minimizers. This guarantee applies to the stochastic projected subgradient, proximal point, and prox-linear algorithms. As an application of our main result, we analyze two statistical recovery tasks---phase retrieval and blind deconvolution---and match the best known guarantees under Gaussian measurement models and establish new guarantees under heavy-tailed distributions.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube