Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Efficient Target Detection and Recognition Method in Aerial Remote-sensing Images Based on Multiangle Regions-of-Interest (1907.09320v2)

Published 22 Jul 2019 in cs.CV, cs.NE, and eess.IV

Abstract: Recently, deep learning technology have been extensively used in the field of image recognition. However, its main application is the recognition and detection of ordinary pictures and common scenes. It is challenging to effectively and expediently analyze remote-sensing images obtained by the image acquisition systems on unmanned aerial vehicles (UAVs), which includes the identification of the target and calculation of its position. Aerial remote sensing images have different shooting angles and methods compared with ordinary pictures or images, which makes remote-sensing images play an irreplaceable role in some areas. In this study, a new target detection and recognition method in remote-sensing images is proposed based on deep convolution neural network (CNN) for the provision of multilevel information of images in combination with a region proposal network used to generate multiangle regions-of-interest. The proposed method generated results that were much more accurate and precise than those obtained with traditional ways. This demonstrated that the model proposed herein displays tremendous applicability potential in remote-sensing image recognition.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.