Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Artificial Neural Network Algorithm based Skyrmion Material Design of Chiral Crystals (1907.09314v1)

Published 19 Jul 2019 in physics.comp-ph, cs.CV, and cs.LG

Abstract: The model presented in this research predicts ideal chiral crystal and propose a new direction of designing chiral crystals. Skyrmions are topologically protected and structurally assymetric materials with an exotic spin composition. This work presents deep learning method for skyrmion material design of chiral crystals. This paper presents an approach to construct a probabilistic classifier and an Artificial Neural Network(ANN) from a true or false chirality dataset consisting of chiral and achiral compounds with 'A' and 'B' type elements. A quantitative predictor for accuracy of forming the chiral crystals is illustrated. The feasibility of ANN method is tested in a comprehensive manner by comparing with probalistic classifier method. Throughout this manuscript we present deep learnig algorithm design with modelling and simulations of materials. This research work elucidated paves a way to develop sophisticated software tool to make an indicator of crystal design.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.