Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Expectation Propagation based Line Spectral Estimation (1907.09094v2)

Published 22 Jul 2019 in cs.IT and math.IT

Abstract: The fundamental problem of line spectral estimation (LSE) using the expectation propagation (EP) method is studied. Previous approaches estimate the model order sequentially, limiting their practical utility in scenarios with large dimensions of measurements and signals. To overcome this limitation, a bilinear generalized LSE (BiG-LSE) method that concurrently estimates the model order is developed. The key concept involves iteratively approximating the original nonlinear model as a bilinear model through Taylor series expansion, with EP employed for inference. To mitigate computational complexity, the posterior log-pdfs are approximated to reduce the number of messages. BiG-LSE automatically determines the model order, noise variance, provides uncertainty levels for the estimates, and adeptly handles nonlinear measurements. Based on the BiG-LSE, a variant employing the von Mises distribution for the frequency is developed, which is suitable for sequential estimation. Numerical experiments and real data are used to demonstrate that BiG-LSE achieves estimation accuracy comparable to current methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.