Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Performance-Complexity Tradeoffs in Greedy Weak Submodular Maximization with Random Sampling (1907.09064v3)

Published 22 Jul 2019 in cs.DM and cs.LG

Abstract: Many problems in signal processing and machine learning can be formalized as weak submodular optimization tasks. For such problems, a simple greedy algorithm (\textsc{Greedy}) is guaranteed to find a solution achieving the objective with a value no worse than $1-e{-1/c}$ of the optimal, where $c$ is the multiplicative weak-submodularity constant. Due to the high cost of querying large-scale systems, the complexity of \textsc{Greedy} becomes prohibitive in contemporary applications. In this work, we study the tradeoff between performance and complexity when one resorts to random sampling strategies to reduce the query complexity of \textsc{Greedy}. Specifically, we quantify the effect of uniform sampling strategies on \textsc{Greedy}'s performance through two metrics: (i) probability of identifying an optimal subset, and (ii) suboptimality with respect to the optimal solution. The latter implies that uniform sampling strategies with a fixed sampling size achieve a non-trivial approximation factor; however, we show that with overwhelming probability, these methods fail to find the optimal subset. Our analysis shows that the failure of uniform sampling strategies with fixed sample size can be circumvented by successively increasing the size of the search space. Building upon this insight, we propose a simple progressive stochastic greedy algorithm and study its approximation guarantees. Moreover, we demonstrate effectiveness of the proposed method in dimensionality reduction applications and feature selection tasks for clustering and object tracking.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.