Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spectral-based Graph Convolutional Network for Directed Graphs (1907.08990v1)

Published 21 Jul 2019 in cs.LG, cs.SI, and stat.ML

Abstract: Graph convolutional networks(GCNs) have become the most popular approaches for graph data in these days because of their powerful ability to extract features from graph. GCNs approaches are divided into two categories, spectral-based and spatial-based. As the earliest convolutional networks for graph data, spectral-based GCNs have achieved impressive results in many graph related analytics tasks. However, spectral-based models cannot directly work on directed graphs. In this paper, we propose an improved spectral-based GCN for the directed graph by leveraging redefined Laplacians to improve its propagation model. Our approach can work directly on directed graph data in semi-supervised nodes classification tasks. Experiments on a number of directed graph datasets demonstrate that our approach outperforms the state-of-the-art methods.

Citations (72)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.