Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss Function (1907.08956v1)

Published 21 Jul 2019 in cs.LG and stat.ML

Abstract: In Bayesian machine learning, the posterior distribution is typically computationally intractable, hence variational inference is often required. In this approach, an evidence lower bound on the log likelihood of data is maximized during training. Variational Autoencoders (VAE) are one important example where variational inference is utilized. In this tutorial, we derive the variational lower bound loss function of the standard variational autoencoder. We do so in the instance of a gaussian latent prior and gaussian approximate posterior, under which assumptions the Kullback-Leibler term in the variational lower bound has a closed form solution. We derive essentially everything we use along the way; everything from Bayes' theorem to the Kullback-Leibler divergence.

Citations (50)

Summary

We haven't generated a summary for this paper yet.