Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adaptive Weight Decay for Deep Neural Networks (1907.08931v2)

Published 21 Jul 2019 in cs.LG, cs.NE, and stat.ML

Abstract: Regularization in the optimization of deep neural networks is often critical to avoid undesirable over-fitting leading to better generalization of model. One of the most popular regularization algorithms is to impose L-2 penalty on the model parameters resulting in the decay of parameters, called weight-decay, and the decay rate is generally constant to all the model parameters in the course of optimization. In contrast to the previous approach based on the constant rate of weight-decay, we propose to consider the residual that measures dissimilarity between the current state of model and observations in the determination of the weight-decay for each parameter in an adaptive way, called adaptive weight-decay (AdaDecay) where the gradient norms are normalized within each layer and the degree of regularization for each parameter is determined in proportional to the magnitude of its gradient using the sigmoid function. We empirically demonstrate the effectiveness of AdaDecay in comparison to the state-of-the-art optimization algorithms using popular benchmark datasets: MNIST, Fashion-MNIST, and CIFAR-10 with conventional neural network models ranging from shallow to deep. The quantitative evaluation of our proposed algorithm indicates that AdaDecay improves generalization leading to better accuracy across all the datasets and models.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.