Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unsupervised Segmentation of Hyperspectral Images Using 3D Convolutional Autoencoders (1907.08870v1)

Published 20 Jul 2019 in cs.CV

Abstract: Hyperspectral image analysis has become an important topic widely researched by the remote sensing community. Classification and segmentation of such imagery help understand the underlying materials within a scanned scene, since hyperspectral images convey a detailed information captured in a number of spectral bands. Although deep learning has established the state of the art in the field, it still remains challenging to train well-generalizing models due to the lack of ground-truth data. In this letter, we tackle this problem and propose an end-to-end approach to segment hyperspectral images in a fully unsupervised way. We introduce a new deep architecture which couples 3D convolutional autoencoders with clustering. Our multi-faceted experimental study---performed over benchmark and real-life data---revealed that our approach delivers high-quality segmentation without any prior class labels.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.