Papers
Topics
Authors
Recent
2000 character limit reached

PH-GCN: Person Re-identification with Part-based Hierarchical Graph Convolutional Network (1907.08822v1)

Published 20 Jul 2019 in cs.CV

Abstract: The person re-identification (Re-ID) task requires to robustly extract feature representations for person images. Recently, part-based representation models have been widely studied for extracting the more compact and robust feature representations for person images to improve person Re-ID results. However, existing part-based representation models mostly extract the features of different parts independently which ignore the relationship information between different parts. To overcome this limitation, in this paper we propose a novel deep learning framework, named Part-based Hierarchical Graph Convolutional Network (PH-GCN) for person Re-ID problem. Given a person image, PH-GCN first constructs a hierarchical graph to represent the pairwise relationships among different parts. Then, both local and global feature learning are performed by the messages passing in PH-GCN, which takes other nodes information into account for part feature representation. Finally, a perceptron layer is adopted for the final person part label prediction and re-identification. The proposed framework provides a general solution that integrates local, global and structural feature learning simultaneously in a unified end-to-end network. Extensive experiments on several benchmark datasets demonstrate the effectiveness of the proposed PH-GCN based Re-ID approach.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.