Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Latency Minimization for Multiuser Computation Offloading in Fog-Radio Access Networks (1907.08759v2)

Published 20 Jul 2019 in eess.SP, cs.IT, and math.IT

Abstract: This paper considers computation offloading in fog-radio access networks (F-RAN), where multiple user equipments (UEs) offload their computation tasks to the F-RAN through a number of fog nodes. Each UE can choose one of the fog nodes to offload its task, and each fog node may serve multiple UEs. Depending on the computation burden at the fog nodes, the tasks may be computed by the fog nodes or further offloaded to the cloud via capacity-limited fronthaul links. To compute all UEs' tasks as fast as possible, joint optimization of UE-Fog association, radio and computation resources of F-RAN is proposed to minimize the maximum latency of all UEs. This min-max problem is formulated as a mixed integer nonlinear program (MINP). We first show that the MINP can be reformulated as a continuous optimization problem, and then employ the majorization minimization (MM) approach to find a solution. The MM approach that we develop is unconventional in that -- each MM subproblem can be solved inexactly with the same provable convergence guarantee as the conventional exact MM, thereby reducing the complexity of each MM iteration. In addition, we also consider a cooperative offloading model, where the fog nodes compress-and-forward their received signals to the cloud. Under this model, a similar min-max latency optimization problem is formulated and tackled again by the inexact MM approach. Simulation results show that the proposed algorithms outperform some heuristic offloading strategies, and that the cooperative offloading can better exploit the transmission diversity to attain better latency performance than the non-cooperative one.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube