Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Usefulness of the Deep-Learning-Based Bug Localization Models to Practitioners (1907.08588v1)

Published 19 Jul 2019 in cs.SE

Abstract: Background: Developers spend a significant amount of time and efforts to localize bugs. In the literature, many researchers proposed state-of-the-art bug localization models to help developers localize bugs easily. The practitioners, on the other hand, expect a bug localization tool to meet certain criteria, such as trustworthiness, scalability, and efficiency. The current models are not capable of meeting these criteria, making it harder to adopt these models in practice. Recently, deep-learning-based bug localization models have been proposed in the literature, which show a better performance than the state-of-the-art models. Aim: In this research, we would like to investigate whether deep learning models meet the expectations of practitioners or not. Method: We constructed a Convolution Neural Network and a Simple Logistic model to examine their effectiveness in localizing bugs. We train these models on five open source projects written in Java and compare their performance with the performance of other state-of-the-art models trained on these datasets. Results: Our experiments show that although the deep learning models perform better than classic machine learning models, they meet the adoption criteria set by the practitioners only partially. Conclusions: This work provides evidence that the practitioners should be cautious while using the current state of the art models for production-level use-cases. It also highlights the need for standardization of performance benchmarks to ensure that bug localization models are assessed equitably and realistically.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.