Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families (1907.08306v1)

Published 18 Jul 2019 in cs.DS and stat.CO

Abstract: We consider the problem of computing the maximum likelihood multivariate log-concave distribution for a set of points. Specifically, we present an algorithm which, given $n$ points in $\mathbb{R}d$ and an accuracy parameter $\epsilon>0$, runs in time $poly(n,d,1/\epsilon),$ and returns a log-concave distribution which, with high probability, has the property that the likelihood of the $n$ points under the returned distribution is at most an additive $\epsilon$ less than the maximum likelihood that could be achieved via any log-concave distribution. This is the first computationally efficient (polynomial time) algorithm for this fundamental and practically important task. Our algorithm rests on a novel connection with exponential families: the maximum likelihood log-concave distribution belongs to a class of structured distributions which, while not an exponential family, "locally" possesses key properties of exponential families. This connection then allows the problem of computing the log-concave maximum likelihood distribution to be formulated as a convex optimization problem, and solved via an approximate first-order method. Efficiently approximating the (sub) gradients of the objective function of this optimization problem is quite delicate, and is the main technical challenge in this work.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.