Papers
Topics
Authors
Recent
2000 character limit reached

A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families (1907.08306v1)

Published 18 Jul 2019 in cs.DS and stat.CO

Abstract: We consider the problem of computing the maximum likelihood multivariate log-concave distribution for a set of points. Specifically, we present an algorithm which, given $n$ points in $\mathbb{R}d$ and an accuracy parameter $\epsilon>0$, runs in time $poly(n,d,1/\epsilon),$ and returns a log-concave distribution which, with high probability, has the property that the likelihood of the $n$ points under the returned distribution is at most an additive $\epsilon$ less than the maximum likelihood that could be achieved via any log-concave distribution. This is the first computationally efficient (polynomial time) algorithm for this fundamental and practically important task. Our algorithm rests on a novel connection with exponential families: the maximum likelihood log-concave distribution belongs to a class of structured distributions which, while not an exponential family, "locally" possesses key properties of exponential families. This connection then allows the problem of computing the log-concave maximum likelihood distribution to be formulated as a convex optimization problem, and solved via an approximate first-order method. Efficiently approximating the (sub) gradients of the objective function of this optimization problem is quite delicate, and is the main technical challenge in this work.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.