Papers
Topics
Authors
Recent
2000 character limit reached

WriterForcing: Generating more interesting story endings (1907.08259v1)

Published 18 Jul 2019 in cs.LG, cs.CL, and stat.ML

Abstract: We study the problem of generating interesting endings for stories. Neural generative models have shown promising results for various text generation problems. Sequence to Sequence (Seq2Seq) models are typically trained to generate a single output sequence for a given input sequence. However, in the context of a story, multiple endings are possible. Seq2Seq models tend to ignore the context and generate generic and dull responses. Very few works have studied generating diverse and interesting story endings for a given story context. In this paper, we propose models which generate more diverse and interesting outputs by 1) training models to focus attention on important keyphrases of the story, and 2) promoting generation of non-generic words. We show that the combination of the two leads to more diverse and interesting endings.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.