Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Principal Component Analysis (1907.08059v3)

Published 18 Jul 2019 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: We present a federated, asynchronous, and $(\varepsilon, \delta)$-differentially private algorithm for PCA in the memory-limited setting. Our algorithm incrementally computes local model updates using a streaming procedure and adaptively estimates its $r$ leading principal components when only $\mathcal{O}(dr)$ memory is available with $d$ being the dimensionality of the data. We guarantee differential privacy via an input-perturbation scheme in which the covariance matrix of a dataset $\mathbf{X} \in \mathbb{R}{d \times n}$ is perturbed with a non-symmetric random Gaussian matrix with variance in $\mathcal{O}\left(\left(\frac{d}{n}\right)2 \log d \right)$, thus improving upon the state-of-the-art. Furthermore, contrary to previous federated or distributed algorithms for PCA, our algorithm is also invariant to permutations in the incoming data, which provides robustness against straggler or failed nodes. Numerical simulations show that, while using limited-memory, our algorithm exhibits performance that closely matches or outperforms traditional non-federated algorithms, and in the absence of communication latency, it exhibits attractive horizontal scalability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Andreas Grammenos (16 papers)
  2. Rodrigo Mendoza-Smith (4 papers)
  3. Jon Crowcroft (75 papers)
  4. Cecilia Mascolo (86 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.