Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Growing a Brain: Fine-Tuning by Increasing Model Capacity (1907.07844v1)

Published 18 Jul 2019 in cs.CV and cs.LG

Abstract: CNNs have made an undeniable impact on computer vision through the ability to learn high-capacity models with large annotated training sets. One of their remarkable properties is the ability to transfer knowledge from a large source dataset to a (typically smaller) target dataset. This is usually accomplished through fine-tuning a fixed-size network on new target data. Indeed, virtually every contemporary visual recognition system makes use of fine-tuning to transfer knowledge from ImageNet. In this work, we analyze what components and parameters change during fine-tuning, and discover that increasing model capacity allows for more natural model adaptation through fine-tuning. By making an analogy to developmental learning, we demonstrate that "growing" a CNN with additional units, either by widening existing layers or deepening the overall network, significantly outperforms classic fine-tuning approaches. But in order to properly grow a network, we show that newly-added units must be appropriately normalized to allow for a pace of learning that is consistent with existing units. We empirically validate our approach on several benchmark datasets, producing state-of-the-art results.

Citations (146)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.